当前位置: 首页 > 产品种类

产品种类

无极4荣耀注册:国外再生水饮用回用的案例分析与启示

时间: 2023-12-17 22:11:13 点击次数:1 来源:无极4开户 作者:无极4荣耀注册官网

  由于全球水资源的持续紧张,如何更加高效地利用再生水成为亟需解决的问题。近年来再生水饮用回用成为了国际研究热点,其具有无需在城市内单独新建配水管网,同时又能提高再生水利用效率等优点。目前,再生水饮用回用在水资源长期短缺的国家已有实际应用,但其尚未在我国引起广泛的关注与重视,也无应用案例。在简要回顾全球再生水饮用回用概貌的基础上,分别选取国外间接饮用回用和直接饮用回用的典型案例,对其主要工艺与出水水质、风险管控措施、成本与能耗进行了剖析,在此基础上对我国再生水饮用回用提出思考与启示,以期对再生水饮用回用在我国的发展起到借鉴意义。

  随着世界经济和人口的快速增长,全球可用的淡水资源逐渐无法满足人类生存和可持续发展的需要。污水再生利用被视为有效解决水资源短缺的策略之一,并已成为全球可持续水资源管理的重要组成部分。目前我国城市再生水主要用于冲厕、绿化或改善生态环境等。但在城市建成区新建再生水管网不仅投资巨大,且实施的难度也较高。此外,不同的再生水用户对于水质标准的要求也不同,且易出现与供水管网混接等事故,这些因素在一定程度上限制了我国城市再生水的推广与利用。2018年全国再生水平均利用率仅为17.2%,西部地区更是仅为8.8%。近年来,再生水饮用回用作为一种新的利用途径引起了国际社会的广泛关注与重视,而类似的自然回用现象早已在全球普遍存在,即上游城市污水经处理达标后排入河流,下游城市从该河流取水作为饮用水。目前,美国、澳大利亚、新加坡、南非和纳米比亚等国家已有再生水饮用回用的实践,而我国尚无实际应用案例。本文在简要回顾全球再生水饮用回用概貌的基础上,分别选取国外间接和直接饮用回用的典型案例,对其主要工艺、出水水质、风险管控措施、成本和能耗等展开分析,为扩展我国再生水回用的思路与途径提供参考。

  再生水饮用回用可分为间接饮用回用(Indirect Potable Reuse,IPR)与直接饮用回用(Direct Potable Reuse,DPR)。其中,IPR指有目的地将深度处理后的污水,注入特定的地表或地下水体中,经自然净化缓冲后,再进入给水处理系统的回用方式;DPR则指将经过深度处理后的再生水与其他水源混合,直接进入给水处理系统,或直接进入供水管网的回用方式。

  据不完全统计,全球目前有报道的正在运行的再生水饮用回用项目共24处,每年产量约9.21亿m3。全球再生水饮用回用量的分布情况如图1所示。

  根据图1(a),美国是目前世界上再生水饮用回用量最高的国家,其回用量约占全球的62.68%。美国早在1962年便已有再生水饮用回用的先例,因此其是再生水饮用回用实践较早、经验也较为丰富的国家。根据图1(b),目前全球再生水饮用回用的主要方式为IPR,其回用量约占全球的98.90%,而DPR仅占比1.10%。由于IPR的环境缓冲区对污染物质具有稀释、混合和衰减等自然净化效果,并具有较长的停留时间,因而公众接受度更高。此外,在实际建成的运行项目中,IPR也具有更大的规模,其平均产水量为14.5万m3/d,而DPR仅为1.6万m3/d,所以IPR能满足更多的用水需求。但也有研究者指出,在IPR过程中,经过深度处理的再生水水质较优,但当环境缓冲区水质较差时,通过低质量的环境缓冲区会导致再生水水质变差,进入后续的给水系统再次处理也会浪费能源与资源,故DPR的效率会更高。然而,DPR的再生水虽直接进入给水处理系统或供水管网,但其并不能作为独立水源,仍需与当地其他水源结合使用,因而会导致其在实际应用中受到限制。

  根据图2,其中应用最广泛的工艺为“(MF/UF)+ RO + AOP”,无论是IPR或是DPR,运用该工艺的再生水饮用回用项目占比均超过50%,而该工艺也被称为“完全高级处理”(full advanced treatment,FAT),被认为是再生水饮用回用的标准工艺。但是RO在产水过程中会产生高盐浓水,其对地表水、地下水和土壤均会造成较大影响。沿海地区可以将高盐浓水就近排入海中,处置成本相对较低,但在内陆地区往往只能依靠蒸发浓缩、膜蒸馏或深井注入等方式解决,从而大大增加了建设成本与能耗。这也是目前再生水饮用回用项目较多集中在沿海地区的原因,如在美国共有31个再生水饮用回用项目位于沿海地区,约占其全部的63%。

  IPR的实施方式根据环境缓冲区的不同,主要包括地下水补给与地表水补给两类。二者均对再生水水质有着较高要求,以避免对地下水造成污染或导致封闭地表水体富营养化等。并且,为保障IPR的安全性,需要建立有效的安全保障体系。此外,成本和能耗也是IPR的重要影响因素。因此本节结合实际工程案例,对上述问题展开分析。

  美国作为应用再生水饮用回用最为广泛的国家,其于1962年便在加州洛杉矶地区建立了全美第一个IPR工程。而在2004年建立的加州橙郡地下水补给系统(Ground Water Replenishment System,GWRS),更被证明是再生水饮用回用的黄金标准,甚至发展成为一种国际模式与设计基础。GWRS的前身为1976年建立的21号水厂,规模为5.7万m3/d,用以IPR工程进行地下含水层补给,主要作用为抵御海水入侵和增加供水水源。目前,GWRS的规模达到了37.9万m3/d,并计划在2023年扩大至49.2万m3/d,以满足更大的用水需求。

  GWRS项目生产的再生水需要得到加州公共卫生部和加州区域水质控制委员会的批准才可进行饮用回用。而GWRS的进水为污水处理厂二级出水,故为确保该项目水质满足高品质要求,GWRS项目采用典型的“完全高级处理”,主要工艺包括MF、RO和AOP(UV+H2O2)等。工艺流程如图3所示,组成概况见表1。

  GWRS采用MF作为预处理工艺,并在进水中添加次氯酸钠,防止MF膜被生物污染。其MF的进水浊度保持在3~5 NTU之间,进料压力保持在0.020~0.086 MPa,以使MF发挥最大效用。在对MF的维护方面,每个MF单元每22 min进行一次反冲洗,以最大程度恢复膜通量,并且每21 d便会进行一次全面的化学清洗。对MF的严格维护,使得MF对浊度的平均去除率可达到97.5%。

  在RO工艺中,每个RO单元由150个压力容器组成,分列,扩建前的15个RO单元以78:48:24的阵列配置,扩建的6个RO单元以77:49:24的阵列配置。而在高峰流量过大时,进水可以绕过RO系统,排出水厂。GWRS使用电导率(EC)和总有机碳(TOC)作为证明RO有效性的监测指标,当RO出水的EC

  GWRS采用AOP(UV+H2O2)对再生水进行消毒,可对病原体达到6-log级的去除。同时,H2O2在紫外线的光照下会产生羟基自由基,加强氧化效果,从而破坏抗紫外线的污染物,如N-亚硝基二甲胺(NDMA)和1,4-二恶烷等。

  由于GWRS在RO前添加了硫酸,致使水中二氧化碳积累,pH值降低;同时,RO在去除盐分的过程中降低了出水的碱度。所以,GWRS通过6个汽提脱碳器和添加氢氧化钙(粉末状熟石灰)提高碱度,并将出水pH维持在6~9,以免管道腐蚀并减少结垢。

  最终,GWRS产水量的2/3与加州圣安娜河水混合后(其中再生水占比约为30%),输送至地表回灌点补给地下含水层,其余1/3的再生水则通过井灌注入海水屏障。并且,由于GWRS项目临近海边,RO产生的高盐浓水可直接通过海洋排污口排出,从而避免了高能耗的浓水处置方式,若其采用蒸发塘或机械浓缩的方式,能耗将会增长37.5%或300.9%。

  根据表2,相较于CRWQCB的水质许可要求,GWRS的进水中浊度、TDS、总硬度、钠、氯、硫酸盐、硝酸氮、铁、锰、大肠菌群总数、三卤甲烷、电导率、总氮和总有机碳等指标偏高,需要着重去除。而经处理后,出水中包括如消毒副产物在内的各项水质指标检测值均满足CRWQCB的水质许可要求,并实现了无药物残留(检测水平<10 ng/L)。并且,所采用工艺对浊度、盐、总有机碳及铁锰等金属元素的去除效果优异,去除率可达90%以上,同时对大肠菌群的去除达到了99.66%。对比我国《地下水质量标准》可知,GWRS的出水水质也符合我国地下水质量Ⅲ级标准要求,达到了我国集中式生活饮用水水源及工农业用水水质要求。此外,除亚硝酸盐、汞、氰、表面活性剂、三卤甲烷和氨氮外,其他指标甚至符合要求更为严格的地下水质量Ⅰ级标准。对于饮用水安全的重点关注对象病原体而言,GWRS的出水同样可满足加州对再生水饮用回用病原体去除量的要求,具体结果如表3所示。

  GWRS共监测了超过500种指标,均可达到或优于州和联邦制定的饮用水标准。GWRS项目运行至今,该地区尚未有因其而引发的水源性疾病暴发情况,也没有任何消费者投诉或出现重大水质安全事故。

  GWRS项目采用了包括源头控制、多级处理、运行监控、水质监测和环境缓冲等在内的多屏障安全工程系统,以确保水质安全。在源头控制方面,GWRS仅收集生活和商业污水,工业废水单独收集并在另一污水厂内处理后排入海洋。并且,GWRS在处理过程中,在MF、RO和AOP等位置建立了严格的危害分析关键控制点(Hazard Analysis Critical Control Point,HACCP)与关键限值,以证明每日病原体减少量符合地下水补给法规,并连续在线监控。其HACCP设置详情如表4所示。

  再生水饮用回用的建设成本因地点、产水规模和附属设施而异。GWRS项目由于规模较大导致成本较高,其初始建设成本为31.43亿元,后扩建花费9.35亿元,总成本高达40.78亿元。其中,GWRS的年运行和维护费用(O&M成本)高达2.75亿元。通常,基于膜处理的O&M成本在2.95~3.26元/m3之间,并由于膜处理能耗较高,电费则能占到O&M成本的41%。单位成本方面,在不包括管道输送与高盐浓水处置成本时,GWRS项目的单位成本为3.44~3.52元/m3,若包括以上两种成本时,其单位成本将会上升至4.06~9.92元/m3之间。

  GWRS项目在2008-2016年的平均能耗为1.135 kW•h/m。